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Abstract. Dissipative Particle Dynamics (DPD) is one of the most promising simulation tech-
niques for studies of mesoscopic properties of soft matter systems. Here, we discuss DPD, its
parameterisation in simple systems, as well as in polymeric systems using the Flory–Huggins
theory, and generalisations of DPD. Block copolymer mesophase separation, polymers and mem-
branes in surfactant solutions, and biomembrane morphology and rupture will shown as specific
examples.

1 Why Mesoscopic Simulation?

Over the last two decades most simulation studies have concentrated on the motion of
individual atoms in systems of a few nanometers and a few nanoseconds. Other simu-
lation methods concentrate exclusively on the macroscopic world of planes, trains and
automobiles. However, between the nano- and macroscopic scale ranges some forty
decades in volume and time. The holy grail of theoretical physics is to bridge this gap.
This is due to the fact that in many cases simulation of this intermediate regime is
essential for understanding macroscopic phenomena, e.g. molecules ordering sponta-
neously on mesoscopic length and time scales. This category of problems includes life
and biological phenomena such as membrane structuring, perforation and trafficking.
As a matter of fact, this list contains all soft condensed matter including surfactants,
polymers and (multi)block copolymers that show microphase separation, or form gels
or glassy systems, see Fig. 1.

What could we expect if we would be able to extend the time scale over which we
can simulate a physical system? If we take the example of lipid bilayers, we find that
new phenomena occur every time we increase the time scale at which we look at our
system [1]. On the shortest time scale of a few picoseconds the lipids show bond and
angle fluctuations of dihedral angles within the same molecule. On larger time scales of
a few tens of picoseconds, trans-gauche isomerizations of dihedrals occur [2]. On a time
scale of a few nanoseconds the phospholipids rotate around their axis, and on the time-
scale of tens of nanoseconds two lipids switch place within a bilayer, giving rise to lateral
diffusion. Within this time scale the individual lipids orient, and lipid membranes show
protrusions [3]. Finally, on a time-scale of 100 ns peristaltic motions and undulations
occur [4].

By virtue of parallelization over several processors or PC clusters, hardware devel-
opments have now pushed the limit of molecular simulations to 100 ns [4]. Nevertheless,
there is a limit beyond which hardware developments cannot help us. For instance, phe-
nomena such as co-operative motion in phase transitions, insertion of large molecules
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Fig. 1. The mesoscale gap. Time is given in seconds

like proteins into membranes, or membrane fusion occur on much larger time scales and
are well outside the range of current simulation power. This requires simulation of the
microsecond range, while a new set of phenomena could be studied if we could address
the millisecond time scale.

The question thus arises how these phenomena can be modelled. One approach is
the dissipative particle dynamics method (DPD). Here, a number of atoms are grouped
together into one simulation bead which is used as the new simulation element. The
reliability of the result obviously depends on how the underlying atoms translate into
the interaction parameters between the DPD beads. Some semi-empirical methods will
be discussed here. Then we concentrate on three applications: The mesophase formation
of block copolymers, the simulation of polymer-surfactant complexes in bulk solution
and the interaction of biological membranes with surfactant.

2 Introduction to DPD

The strategy to simulate molecular motions on length- and time scales that are much
larger than what can be achieved with ordinary Molecular Dynamics simulations is
based on two main ingredients. First, atoms are lumped together into “united atoms”
describing more than one atom. The second ingredient used is that these new particles
interact with each other via rather soft forces as the positions of the underlying atoms are
smeared out. As we want to describe the correct thermodynamics (and dynamics) on a
larger length-scale than an atom, we only need to reproduce the correct compressibility
of the liquid and the correct solubilities of the various components into each other [5].
To arrive at this goal, we have the freedom to choose the effective interaction as a rather
soft repulsion, provided that we satisfy the criteria discussed above. This means that we
can leave out the hard core repulsive interaction between the atoms. Since it is the hard
core interaction that forces the use of small time-steps (10−15 s), the removal of this core
allows a considerable increase of the time-step, typically four orders of magnitude.
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2.1 Forces

In DPD a set of interacting particles, whose time evolution is governed by Newton’s
equation of motion, is considered. Hence, at every time-step the set of positions and
velocities, {ri,vi} follows from the positions and velocities at earlier time. The force
acting on a particle is given by the sum of a conservative, drag and pair-wise additive
random force, i.e. fi =

∑
j(F

C
ij +FD

ij +FR
ij ) where the sum runs over all neighbouring

particles within a certain distance Rc. All forces depend on coordinate differences. The
conservative force is given by

FC
ij =

{−aij (1− |rij | /Rc) r̂ij if |rij | < Rc
0 if |rij | > Rc

,

where aij is a maximum repulsion between particle i and particle j, rij = rj − ri and
r̂ij = rij/ |rij | [5,6], see Fig. 2.

Between neighbouring particles on a chain an extra spring force is defined to bind
the particles together,

F S
ij = 4rij if i is connected to j.

The drag force FD
ij and the random force FR

ij act as heat sink and source, respectively,
so that their combined effect is a thermostat. The random force is given by

FR
ij = σω (rij) r̂ijζ/

√
δt

and the drag force as

FD
ij = −1

2
σ2ω (rij)

2
/kBT r̂ij (vij · r̂ij) ,

where ζ is a random variable with zero mean and unit variance, and ω(r) = (1− r) for
r < 1 and ω = 0 for r > 1.

The amplitude of the random force should be taken proportional to 1/
√
δt. Why is

this? Let θ(t) be the random force exerted on a particle at a particular time step. This
force leads to Brownian motion, where the displacement of a particle is proportional to

R ∼√
Nstepsδr =

√
1
δt
θδt ∼ √t× θ

√
δt.

Distance Rc

Force

Fig. 2. The conservative force used in DPD
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Since the displacement should not depend on the particular time step that we have chosen
to simulate the process, θ(t) should be proportional to 1

√
δt. This particular thermostat

is special in that it conserves (angular) momentum leading to a correct description of
hydrodynamics [7]. The reason why this thermostat conserves hydrodynamics is quite
profound. All forces acting on particles are exerted on them by other particles nearby.
This holds for the conservative forces, as well as for the friction and random forces.
Since all particles obey Newton’s third law, the sum of all forces in the system vanishes.
Moreover, if we take any given volume of liquid, then all forces exerted between particles
enclosed by that volume vanish. Consequently, the total acceleration of this volume of
liquid equals the sum of all forces that cross the boundary of the volume. This is the
very condition that leads to the Navier–Stokes equation. Therefore, whatever interaction
force we invent between the particles, as long as it is a local interaction and satisfies
Newton’s third law we will always have hydrodynamics. If the random force would
not be implemented pair-wise, but instead relative to a fixed background, we would
break Newton’s law. This is the case in Brownian Dynamics. Momentum is no longer
conserved, and no hydrodynamic interaction is present in the simulation.

We choose the particle mass, temperature and the interaction range as units of mass,
energy and length, hence m = kBT = Rc = 1 and the simulated time is expressed in
the natural unit of time

τ = Rc

√
m

kBT
.

The DPD method in general has been shown to produce a correct (N,V,T) ensemble if
the fluctuation-dissipation relation is satisfied [5,8]. Why is this important? In general
the state of the system can be represented by a vector in 6N-dimensional space, {r3N,
p3N}. The probability to find the system at any point in phase-space is the density of
states �{r3N, p3N}. The evolution of the system in phase-space can formally be written
via the Liouville equation, which is

∂�

∂t
= L� = Ld�+ Lc�. (1)

In this equation L is the Liouville operator, which we can split to operators related to
the conservative (Lc) and the dissipative force (Ld). If we turn off all noise and friction
in the simulation the latter vanishes, and the evolution is solely governed by Lc. In
equilibrium, the density of states does not change, and hence Lc�eq must be zero. Here
�eq is the Boltzmann distribution:

�eq ∝ exp

(

−U
(
r3N

)

kBT
−

∑

i

p2i
2mikBT

)

.

If we now check (1), it is clear that the dissipative Liouville operator acting on the
Boltzmann distribution must also vanish, otherwise the equilibrium would shift to an-
other distribution when noise and friction are turned on. To maintain the correct Boltz-
mann distribution, noise and friction must therefore be administered in a particular way.
Español and Warren [8] proved that if we choose any distance dependent noise term

FR
ij = σω(rij)r̂ijζ/

√
δt,
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then the friction term must be taken as

FD
ij = −1

2
σ2ω(rij)

2
/kBT r̂ij (vij · r̂ij) .

2.2 Simulation Techniques

At every time-step the set of positions and velocities, {ri,vi}, is updated from the
positions and velocities at earlier time. All update algorithms known from Molecular
Dynamics can be used in principle [9], but the presence of the velocity in the forces
complicates things. A straightforward method is to use the Euler scheme

ri (t+ δt) = ri(t) + vi(t)δt,
vi (t+ δt) = vi(t) + Fi(t)δt,
Fi (t+ δt) = f (ri(t+ δt),vi(t+ δt)) .

However, temperature control is not very accurate in this method. To use a second order
update algorithm is not as straightforward as it may seem. A second order algorithm
integrates the positions from t to t + δt using the velocity and accelerations known at
t. To update the velocities, however, we need to know the accelerations at time t and at
time t + δt. In ordinary Molecular Dynamics this is not a problem since the forces at
time t+ δt are known once the new particle positions are calculated. In DPD, however,
we need to know the velocity in the next time step in order to calculate the force that we
need to update the velocities.

Two solutions to this problem are worth mentioning. The first is a modified version
of the velocity-Verlet algorithm [5]:

ri(t+ δt) = ri(t) + δt vi(t) +
1
2
δt2fi(t),

ṽi(t+ λ δt) = ṽi(t) + λδt fi(t),
fi(t+ δt) = fi (ri(t+ δt), ṽi(t+ λ δt)) , (2)

vi(t+ δt) = vi(t) +
1
2
δt (fi(t) + fi(t+ δt)) .

The masses of the particles are set to 1, so that the force acting on a particle equals its
acceleration. The force is updated once per iteration. The velocity in the next time-step
is estimated by a predictor method. This is done in the second step of our algorithm. The
velocity is corrected in the last step. If the parameterλ is put atλ = 0.5 this scheme equals
the velocity-Verlet algorithm [10]. It is empirically observed that if we use λ = 0.65
we find a very accurate temperature control, even at the time-step δt = 0.06τ . This is
probably due to a cancellation of errors. A more systematic study into the influence of
parameter λ was presented by Den Otter and Clarke [11].

The second method, presented by Pagonabarraga et al. [12] can be seen as an ex-
tension of this algorithm. In this method the same update scheme as in (2) is used, but
the velocity dependent part of the force is iterated until a stable value for the velocity in
the new time step is obtained. The scheme is therefore named self-consistent. Because
it is self-consistent, the simulation algorithm is also time-reversible. This is found to
have an important influence on the temperature control. For most practical applications,
however, the predictor method is comparably accurate, but faster.
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2.3 Parameterisation

This has two parts, the first is to derive the correct length- and time scales of the simula-
tion, and the second is to obtain the repulsion parameters. DPD can be used either as a
flow solver or as a method to simulate molecular dynamics over time scales far beyond
what can be reached with Molecular Dynamics. If it is used as a flow solver, the time
scale of the simulation is related to hydrodynamic relaxation time of the problem. This
must be matched between the simulation and the problem. In practice, this calibration
is done by adjusting the viscosity of the fluid. If explicit molecules and their diffusive
behaviour are simulated, we need to match, e.g. the diffusion coefficient of water. Here
we concentrate on the latter application of DPD. Since water is an important compound
we will use it to define the length- and time scales used in ‘molecular’ DPD [13].

Let a bead correspond toNm water molecules. The numberNm can be viewed upon
as a real-space renormalization factor. Thus, a cube of volumeR3

c represents �Nm water
molecules, where � is the number of DPD beads per cubicRc. From the density of water
and its molecular weight, we can calculate the volume per water molecule in liquid water

at room temperature as 30 Å
3
. Thus, the physical volume of this cube equals 30 �NmÅ

3
,

hence the length scale Rc follows as

Rc = 3.107(�Nm)1/3 (Å).

To gauge the unit of time, we match the long-time diffusion coefficient of water. Some
care must be taken here. The self-diffusion coefficient of a water bead is not the same
as the self-diffusion coefficient of water, since the bead representsNm water molecules.
When these move over the vectors R1, R2, . . .RNm , their centre of mass moves over the
vector Rw = (R1 + R2 + . . .+ RNm) /Nm. Hence the ensemble average of the mean
square displacement of the water beads is

R2
w = 〈Rw ·Rw〉 =

(〈R1 ·R1〉+ 〈R2 ·R2〉+ . . . )
N2

m
=
R2

Nm
,

whereR2 is the mean square displacement of a water molecule.At the noise and repulsion
parametersσ = 3 and a = 78, the diffusion coefficient of water beads in DPD simulation
was obtained as

Dw = 0.1707(14)R2
c/τ.

Equating this to the experimental diffusion coefficient of water [14]
Dwater = (2.43± 0.01)×10−5 cm2/s, leads to the time scale

τ =
NmDsimR

2
c

Dwater
= 14.1± 0.1N5/3

m (ps). (3)

In this equation it is implicitly assumed that the repulsion parameter between equal beads
is fixed to the value a = 78, and that the bead density is fixed at � = 3.

At this point we can understand why the DPD method is so much faster than straight-
forward molecular dynamics. There are two combined effects that lead to speed-up. The
first contribution comes from the low Schmidt number in the simulation [5]. The Schmidt
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number is the ratio between viscosity and the self-diffusion coefficient,Sc = ν/D. In an
ordinary liquid like water, this ratio is roughly Sc ≈ 1000, whereas in the DPD method
we have Sc ≈ 1. The origin of this difference can be traced back to the removal of
the hard core from the interaction potential. This hard core leads to a caging effect, i.e.
an atom undergoes many collisions before it is actually transported. The soft potential
used here removes this caging affect, so that the mobility of particles is increased by
a factor of 1000. The second factor contributing to the speed-up is the scaling of the
physical time with the renormalization factor Nm as in (3). On top of the power 5/3 by
which the physical time scale increases, the amount of CPU time will decrease inversely
proportional to Nm if we want to simulate a given volume, simply because we have
to update the position of fewer objects. Thus, for a given system volume, DPD can be
expected to be faster than MD by a factor of roughly 1000N8/3

m ≈ 2×104 for Nm = 3
and about 105 for Nm = 6. This is independent of hardware and disregards the CPU
time spent on evaluating the (relatively long ranged) Lennard-Jones potential.

To find the interaction parameters for this model, we need to match the liquid structure
function in the limit k → 0, as this determines the free energy change associated to
density fluctuations. This in turn is related to the compressibility and solubilities. Note
that the pressure itself drops out in an NVT ensemble, as this is a linear variation of the
free energy. It was previously proposed that the following relation should hold [5]:

1
kBT

(
∂p

∂�

)

simulation
=

1
kBT

(
∂p

∂n

)

experiment
,

where � is the bead density in the simulation, and n is the density of e.g. water molecules
in liquid water. However, this relation only holds if one DPD bead corresponds to one
water molecule. In general, the system should satisfy

1
kBT

(
∂p

∂�

)

simulation
=

1
kBT

(
∂n

∂�

)

·
(
∂p

∂n

)

experiment
=
Nm

kBT

(
∂p

∂n

)

experiment
,

where Nm is the number of water molecules per DPD bead. When Nm is chosen as
Nm = 3, the compressibility of water at room temperature is matched if the repulsion
parameter between particles of the same type is determined at aii = 78. Note that it is
taken the same for all liquid components, as we actually simulate equal liquid volumes
for all components.

The next parameters to determine are the bead-bead repulsions, by matching solubil-
ity. In polymer chemistry solubility is usually expressed by specifying the Flory–Huggins
χ-parameters. This parameter represents the excess free energy of mixing in the Flory–
Huggins model. This is a cell model, where every cell is filled by a fraction φ of A
molecules and by a fraction 1− φ of B molecules, i.e. the lattice is completely filled. If
A is a polymer occupying NA cells, and B is solvent that occupying NB cells, the free
energy per cell (disregarding constants and terms linear in φ) can be written as

fν
kBT

=
φ lnφ
NA

+
(1− φ) ln(1− φ)

NB
+ χφ(1− φ).

Different polymers usually tend to segregate, see Fig. 3. To model this behaviour we
impose a larger repulsion between unlike beads than between beads of the same type.
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Fig. 3. The demixing curve (full curve) and spinodal (dashed curve) in Flory–Huggins theory

It has been established that the χ-parameter is linearly related to the excess of the AB
repulsion over the AA repulsion [5]. When the volume fraction of A in the majority
B phase is measured for two liquids, each consisting of molecules of length N , the
χ-parameter can be obtained by substituting the simulated volume fraction into the
mean-field expression for the binodal:

χN =
ln (1− φ)− lnφ

1− 2φ
. (4)

This expression should be valid far away from the critical point. For aii = 78 this led to
the correspondence [13]

χN = 0.231± 0.001∆a,

where ∆a = aAB − aAA is the excess repulsion.
The pertinentχ-parameters can be determined by matching the Flory–Huggins model

to relevant experimental solubility data. An alternative to the use of mean-field theory
as an intermediate was provided by Wijmans et al. [15]. They simulated the binodal in a
mixture of a polymer and a single bead solvent using the Gibbs ensemble Monte Carlo
method. This led to the binodal curve:

∆a ≈ 0.516N−0.751
∣
∣N0.435 ln (1− φ)− ln (φ)

∣
∣1.826

+ 2.25
(
1 +N−0.44)1.75

,

where N is the number of beads per polymer. This equation enables us to compare
simulations to experiments directly, or alternatively to extract the simulation parameters
from experimental data.

2.4 Generalisations and Alternatives

DPD, as described above, is like a minimal version to simulate a molecular liquid. For
particular applications, particles can and indeed have been given internal degrees of
freedom, such as an internal energy [16,17], angular momentum and orientation [18].
The former generalisation allows constant energy simulations, so that heat flows can
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be simulated. The latter generalisation describes particles with spin, leading to higher
viscosity. Another variation is to use each particle as a centre for a weighted density
functional [19]. This gives the freedom to insert any desired free energy functional, and
thus alter the equation of state, and simulate free surfaces.

DPD is by no means the only technique by which mesoscale simulations can be
performed. One option is to use Lagrangian flow solvers. By adapting this approach a
simulation technique for modelling viscoelastic fluid flow has been developed by Yuan,
Ball and Edwards [20]. By using a moving Voronoi mesh, the method is able to track
the details of fluid behaviour, e.g. deformation and stream lines in viscoelastic liquids.
The velocity (and pressure, etc.) is defined on discrete points, which are convected with
the flow. The points exchange momentum with their neighbour, and the interactions are
chosen by discretising the Navier–Stokes equations.

Smoothed Particle Hydrodynamics (SPH) is a similar scheme without a mesh. It
uses an interpolation scheme to calculate spatial derivatives based on weight functions
centred around the particles. The particles interact via a pairwise interaction, and pressure
is included explicitly. Newton’s 3rd law is not obeyed, but the scheme is close to that of
DPD [21].

Chris Lowe introduced a variation of DPD [22] in which the interaction potential is
the same, but the velocities of the particles are exchanged rapidly via an Andersen Monte
Carlo method [23]. New relative velocities are taken from a Maxwell distribution, so that
the temperature control is rigorous. When small steps are taken and the velocities are
exchanged at every step, this method leads to much higher viscosity than DPD. In fact,
any Schmidt number can be chosen. On the other hand, low viscosity is problematic.

Another alternative is the Lattice Boltzmann method, which is used to solve the
Navier–Stokes equations on a lattice. The lattice is chosen as a 3D projection of a 4D fcc
lattice. This choice minimises lattice artefacts. On this lattice a discrete implementation
of the Boltzmann equation is simulated. When a fluid mixture is to be simulated the same
lattice may serve as a basis for a Landau expansion of the free energy [24]. Thus, the
method contains no explicit molecules, and no noise is needed. Finally self-consistent
field theory can also be used to simulate diffusive problems of, e.g. block copolymers on
a 3D lattice [25]. Here a lattice is used to calculate the polymer Green functions. From the
Green functions follow the local polymer volume fractions. These in turn determine the
local chemical potentials of the various segments. The chemical potential gradients are
coupled to the polymer mobility via Onsager kinetic coefficients. This leads to a Smolu-
chowski equation for the density fields which can be solved numerically. Because the
polymer statistics is by construction Gaussian, this method is strictly speaking not valid
for polymer solutions. Experiments indicate that also block copolymers have markedly
non-Gaussian statistics even quite close to their critical point.

All methods mentioned here have positive and negative properties, this also holds for
DPD. The unresolved issues in DPD are as follows. First, the Schmidt number problem.
The speed by which momentum diffuses is the kinematic viscosity ν, the speed by which
particles travel is the diffusion coefficientD. The Schmidt number is Sc = ν/D ∼ 1000
in a liquid like water, whereas it is of the order 1 in DPD. This effectively means that the
diffusion coefficient is overestimated by a factor of 1000 when the viscous time scale is
matched. When viscous flow is to be simulated correctly, an alternative to classical DPD
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is theAndersen Monte Carlo method by Lowe. For molecular processes that are diffusion
controlled, however, fast diffusion is a great help to speed up the simulation. The second
problem appears when the method is used for turbulent hydrodynamic problems. The
rather soft beads lead to a low sound velocity. This means that at high Reynolds numbers,
one may run into unwanted supersonic flow. To repair this flaw, the incompressibility of
the liquid has to be built into the method by other means than by soft repulsive particles.
Finally, when long polymers and micelles are to be simulated, or breaking oil droplets
in a surfactant solution, one may run into a clash of length scales. To resolve a coarse-
graining where individual surfactant molecules are simulated (1 nm resolution), and to
simulate micron size droplets at the same time (1 µm size) requires a simulation of order
1010 particles. This is presently not possible in DPD, but this problem is generic for all
mesoscale methods.

Although DPD is a rather new technique it has already been applied to a wide variety
of problems including complex two-phase flow, such as the rheology of dense colloidal
suspensions [26], the break-up of oil droplets in gravitational and shear fields [27],
and spinodal decomposition and domain growth [28–30]. In the next two sections we
concentrate on a small number of applications, the phase formation of block copolymers,
polymer-surfactant interactions and the simulation of biomembranes.

3 Block Copolymer Mesophase Separation

3.1 Polymers in Melt

Diblock copolymers are polymers consisting of two linear blocks (A and B) of mutually
insoluble polymers, chemically connected end-to-end. When a melt of these polymers is
quenched (i.e. the temperature is suddenly dropped), the A-blocks and B-blocks tend to
phase separate. The connectivity of the polymers prevents macroscopic phase separation,
and, consequently, the system can only reduce its free energy by connecting the A-
rich and B-rich domains in structures like spheres, rods, sheets, perforated sheets or
complicated sponge-like structures. This principle has been known for quite some time,
see Bates and Fredrickson for a review [31], but only in recent years our understanding
as to which phase is formed under what conditions has increased to a level where we
are in the position to predict the phase diagram. The question as to which structure is
formed under what condition was first theoretically studied by Leibler [32], who used
Gaussian coil statistics to calculate the free energy in a Landau theory. The equilibrium
microstructure in this theory depends on the ratio f of the length of the A section relative
to the total length of the polymer, and on the mutual solubility of theA and B units, which
is usually represented by the Flory–Huggins χ-parameter [31]. We want of a theory, or
a simulation method, to be able to resolve the following issues:

1. To predict the phase structure of diblock copolymers as function of f , χ andMn.
2. To understand the dynamics of formation of a phase after a temperature quench.
3. To describe the transition of a copolymer system from one mesophase structure into

another.

Since the driving force for the formation of mesophases comes from the surface ten-
sion between phases A and B, this needs to be reproduced correctly. Also the conforma-
tion and dynamics of homopolymers in the melt needs to be correct. For homopolymers
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the theory predicts that the endpoint separation as function of polymer length N in a
melt should scale as

Re ∼ N1/2.

Furthermore, the diffusion coefficient and the relaxation time of the end-to-end vector
should scale as [33]

D ∼ N−1 and τR ∼ N2.

Spenley has checked these scaling relations [34]. He found that

Re ∼ (N − 1)0.498±0.005 , D ∼ N−1.02±0.02 , and τR ∼ N1.98±0.03.

The correspondences are excellent. For the surface tension of an ordinary liquid near its
critical point one may expect the scaling law [35]

σ ∼ (1− T/Tc)
µ
,

whereTc is the critical temperature, andµ is an exponent that takes on the valueµ = 1.26
for the Ising model, and µ = 3/2 for the van der Waals liquid. Groot and Warren have
simulated the surface tension between two homopolymer melts in the DPD model [5].
They noted that for a polymer-polymer interface, T corresponds to 1/χ and that the
critical χ-parameter between two homopolymers is χc = 2/N , and thus found the
following master equation for the surface tension:

σ/Rc = 0.58 �kTχ0.4(1− 2/χN)3/2
.

The power 3/2 is expected, as one often finds mean-field theory to work well for polymers.
The prefactor χ0.4 is at variance with mean-field theory, which predicts a factor χ1/2.
The polymer length dependence of the surface tension appears to match quantitatively
with experimental results, see Fig. 4.

Fig. 4. Simulated polymer-polymer surface tension master curve and experimental data, repro-
duced from [5,36]
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3.2 Expected and Simulated Phase Diagram

To the lowest order, mean-field theory predicts that the block copolymer phase diagram
is determined only by product χN , and by the ratio f = (length of A block) divided
by the total length of polymer, see Fig. 5. Therefore, to lowest order we can rescale
a long polymer down to a small number of segments per chain. DPD simulations of
block copolymers were performed by Groot et al [36,38], who used a polymer length
N = 10 and χN ≈ 46. This is well outside the weak segregation limit. Configurations
of A5B5 and A3B7 polymer systems containing 40 000 particles are shown at time
τ = 4 000τ ∼= 430τR, where τR is the Rouse time of a homopolymer of the same
molecular weight. Due to symmetry of the polymer the A5B5 system must be either
lamellar (for large χN ) or disordered (for small χN), but when the A:B ratio is changed
away from 1:1 other phases are experimentally found to appear [31]. In the simulation
it is indeed found that the A5B5 system converges to a lamellar phase, see Fig. 6. The
A3B7 system, in contrast, does not converge to a lamellar phase. The A-domains are
shown as white spots in Fig. 6.

Fig. 5. Expected phase diagram based on work by Matsen and Bates [37] and reproduced from
Groot and Madden [36]

Fig. 6. Conformation of A5B5 system (left) and A3B7 system (right), after [36]
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Fig. 7. Evolution of A3B7 block copolymer system, after [36]

The time evolution of theA3B7 system is shown in Fig. 7. In the top left conformation
we see a structure that resembles the gyroid phase, but which is predicted to be unstable.
After a further 2 000 time units we find the top right structure. Note that the system of
rods has lost symmetry relative to the earlier stage, i.e. the rods tend to align in a co-
operative manner. In the next stage, shown in the bottom left picture of Fig. 7, the rods
are completely aligned, though some sideward connections are still present. In the final
configuration the sideward connections are broken and the system is locked in a state
of parallel rods in a perfectly hexagonal arrangement. These results show that the DPD
method is capable of changing the topology of a micro-phase structure in an efficient
way. Qualitatively, it is found that the A5B5 system evolves to the lamellar phase as it
should, and that the A3B7 system evolves to a hexagonal phase, which is expected to be
stable between 0.165 < f < 0.314 for the present χ-parameter.

In a subsequent study simulations were performed on a range of polymeric systems:
A5B5 (f = 0.5), A4B6, (f = 0.4), A3B7 (f = 0.3) and A2B8 (f = 0.2) and A1B9
(f = 0.1). The latter remained an isotropic liquid throughout the course of the simulation.
Apart from the A2B8 system, all of the simulations finally produce a phase structure that
is consistent with self-consistent field theory. To further quantify the phase diagram near
the H1-Lα phase transition line, simulations of mixed polymers were done. Assuming
that for these mixtures the mean value of f is representative of a homopolymer system
of the same value of f , A3B7 and A4B6 polymers were mixed to create systems of
average value 〈f〉 = 0.325, 0.35 and 0.375. In experiments, Zhao et al. [39] also
blended two block-copolymers to obtain a mixture with a preferred (mean) asymmetry,
〈f〉. These experiments indicate that the mixture behaves as a homopolymer as long as
the difference between the two polymers is small. In simulations, all systems within the
predicted lamellar phase region did indeed converge to a lamellar phase, and the same
holds for the hexagonal phase region. However, between the hexagonal phase and the
lamellar phase DPD does not produce a gyroid phase but a perforated lamellar phase
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a) b)

Fig. 8. a) Perforated lamellar system for 〈f〉 = 0.35, after [36]. b) Body-centred cubic system at
〈f〉 = 0.14, after [36]

instead, see Fig. 8. This phase has recently been identified in experiments [39,40], but it
has not been predicted from self-consistent field theory.

For theA2B8 system theory predicts a hexagonal phase. In the simulation this system
forms a disordered micellar phase that lasts the total length of the simulation, 32 000
time units. To proceed, polymers of structures A2B8 and A3B7 were blended. Of these
the system with 〈f〉 = 0.275 evolved to the hexagonal phase, and the systems with
〈f〉 ≤ 0.25 remained in a liquid-like, entangled tube state during the course of the
simulations. Hence atχN = 46 simulation predicts a phase transition from an entangled
tube state to a hexagonal phase near fc ≈ 0.26± 0.02. At this point we note that at low
f we do not find the expected BCC quasi-crystalline phase, but instead we find a liquid-
like ordering in flexible micelles. To understand the differences between theory and
simulation, we need to study the influence of the finite chain length.

The simulated polymers are only of length N = 10. This increases artificially the
importance of fluctuations relative to really long polymers. Thus fluctuations lower the
free energy of isolated micelles relative to that of infinitely long rods. For surface tension
the finite polymer length is apparantely not very important, but for the phase diagram
the effects due to finite length can be severe. Weak coupling calculations predict that the
order-disorder transition at f = 0.5 for small polymers shifts up as [41]

(χN)c = 10.5 + 41.0N̄−1/3.

For simulations with small polymer lengths this would imply that the effective χ-para-
meter (i.e. corresponding to infinite N ) is smaller by a factor

(χN)eff =
10.5

10.5 + 41.0N̄−1/3χN =
χN

1 + 3.9N̄−1/3 . (5)

The decrease of the effective χ-parameter is controlled by fluctuations characterised by
a Ginzburg parameter

N̄ = 63(R3
g�p)2 = (R3

e�p)2,
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where �p is the polymer concentration and Rg the radius of gyration [31]. It is this N̄
which appears at the right hand side of (5). This parameter is determined by the number
of other polymers in the volume that a polymer occupies. Substituting the end-point
separation that we obtained for homopolymers, and polymer density �p = �/N we find

(χN)eff =
χN

1 + 4.3�−2/3N−1/3 ≈ 0.51χN

for our simulations at N = 10. The effective χ-parameters would thus be given by
(χN)eff = 23.4. From the simulations we find a reasonable match with mean-field
theory at (χN)eff = 20± 2, though the location of the H-G transition is slightly off.

The consequence of this is that these simulations should be compared with the
theoretical phase diagram at χN ≈ 20. If this assertion is correct we should find a BCC
phase for the f = 0.14 system when we considerably increase χN over the value that
we currently used, as this would put us in the middle of the cubic phase. Therefore,
a number of runs at various values for f and χ were performed so as to follow the
theoretically predicted BCC phase boundary. Intermediate values of f were obtained by
blending A1B9 with A2B8. The structure at f = 0.14 and χN = 98 is shown in Fig. 8b.
This system rapidly forms spherical micelles, which afterwards form a quasi-crystalline
phase on a much larger time-scale.

If we compare the theory to the simulation results at χN = 20, we actually find a
matching correspondence. Theory predict the transitions from disordered-FCC, FCC-
BCC, BCC-hexagonal, hexagonal-gyroid and gyroid-lamellar at f = 0.210, 0.214, 0.240,
0.340 and 0.374. The DPD results for the equilibrium structure of block-copolymers are
in line with this, and are summarised in the schematic phase diagram shown in Fig. 9.
The “effective” Flory–Huggins parameter is obtained by extrapolation to infinitely long
chains using finite chain simulations. This diagram is based on 27 systems and should
only be seen as a rough indication of which phase we find where. The diagram com-
pares well to the diagram that Larson produced for short lattice chains in a monomer
solvent [42]. In accordance with mean-field theory the simulated diagram shows the
classical quasi-solid body centred cubic (BCC), hexagonal (H), and lamellar phases (L).
However, we also find melted structures like a liquid micellar phase (LM), a liquid rod

Fig. 9. Rough phase diagram coming forward from DPD simulations, after [38,44]
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phase (LR) and a connected tube phase (CT). These melted structures agree with exper-
imental observation [43] and with Monte Carlo simulations of block copolymers. The
DPD simulations also predict a hexagonally perforated lamellar phase (HPL) which has
been observed in experiments [39,40], and a small region where screw dislocations in a
lamellar phase are stabilised (SDL).

3.3 Evolution Pathways

An important advantage of the DPD method is its explicit results for time-dependence.
This is very relevant for polymer microphase separation, since for long polymers the typ-
ical evolution time can be long, especially when the polymers are branched. For grafted
polymers, the time that a side-branch needs to disjoin from one micelle sets a natural
scale for the time of topological rearrangements. If a polymer melt is quenched from a
high temperature into the ordered phase, the pathway through which the final structure
is reached is relevant if the time of interest is months rather than minutes or hours. To
introduce the formation process of the mesophases we briefly repeat the qualitative find-
ings from DPD simulations that have been reported elsewhere [36,38,44]. Processes on
three different length- and time- scales can be distinguished by the formation of polymer
micro-phases:

1. phase separation on the mesoscopic bead level,
2. organisation of polymers into micelles,
3. organisation of micelles into a superstructure with its own particular symmetry.

A schematic diagram summarising the different effects is shown in Fig. 10. The
evidence for this scheme comes from observing the time evolution of polymer systems
of various compositions at a fixed value of χN , and capturing the qualitative effects

Fig. 10. Schematic diagram of evolutionary processes, after [38,44]
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of the evolution in a simple picture. This is a conceptual framework, which helps to
rationalise the evolution, rather than an exact description of the location of various
transition points. These obviously depend on the precise value ofχN . Effects on different
length-scales interplay in both the final structure and in the pathway to form it. On level 2,
the dimensionality of the micelles (spherical, rod-like or planar) is the dominating factor.
At the AB segregation parameters used in these simulations, the transitions between
these structures are found at f1 ≈ 0.20 and f2 ≈ 0.37. On a global level (level 3)
the important transition points are the percolation transition, where the rods form a
interconnected tube network, the nematic transition and the smectic transition. These
are located respectively at fp ≈ 0.23, fn ≈ 0.27 and fs ≈ 0.32. For compositions
where fp < f < f2 a percolating interconnected tube phase is formed as precursor
of the final phase. Experimental evidence comes from time-resolved X-ray scattering,
see Balsara et al. [45] and references therein. These experiments reveal the presence of
two processes, a fast process that is believed to be related to the local segregation of
the blocks (ordering levels 1 and 2) and a slow process that leads to long-ranged order
(level 3).

3.4 Importance of Hydrodynamics

A clear comparison to establish the role of hydrodynamics can be made when sim-
ulations are performed with and without hydrodynamics. Two continuum simulation
methods have therefore been compared. Both describe the same Hamiltonian system,
but they differ in their evolution algorithm. The first method is the Dissipative Particle
Dynamics method, and the second is the Brownian Dynamics method. The only differ-
ence between the two is that all hydrodynamic interactions are taken into account in the
former method, but not in the latter. The polymer architecture, connectivity, interactions
and the liquid compressibility are explicit in both methods. Thus we can make a very
pure comparison, to see what happens if only hydrodynamics is turned off while all other
physical effects are included. For symmetric polymers the soft sphere model is found
to predict the formation of lamellar domains of some eight lamellae across, irrespec-
tive of the presence of hydrodynamic interactions. Without external shear experimental
samples remain globally disordered, but local order does appear spontaneously. Exper-
imental systems also form domains of some eight lamellae across, hence they order on
the length-scale seen in the DPD simulations.

Since different compositions lead to aggregates of different topology, it is not clear
beforehand if the influence of hydrodynamic interactions is equally important in the
different regions of the phase diagram. For this reason we have performed simulations
both for asymmetric polymers (f = 0.3), and for symmetric polymers (f = 0.5). In
the former the system has to go through a percolated state and a nematic transition to
find its equilibrium structure and in the latter system domains of local lamellar order
have to grow together to form a macroscopically homogeneous phase. We first discuss
the results obtained for the A3B7 copolymer system. The simulations were performed
in a box of V = 20×20×20 using periodic boundary conditions. At time t = 0, 2400
copolymers of structure A3B7 were arranged randomly in the box and the systems were
allowed to evolve.
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Fig. 11. Evolution of A3B7 system with hydrodynamics (DPD, top row) and without hydrody-
namic interaction (Brownian Dynamics, bottom row), after [36]

Figure 11 shows three stages in the evolution of the simulated system. The DPD sim-
ulation quickly forms micro-phase separated regions that percolate into interconnected
tubes. These tubes form a globally disordered fluid phase with tubes changing shape
and moving relative to each other. After approximately 7 500τ a domain of hexagonal
order is formed, which grows at the expense of the disordered phase. The subsequently
formed hexagonal phase is stable for the rest of the simulation. On the basis of self-
consistent field calculations it has recently been put forward [46] that the hexagonal
phase is formed from the gyroid by a process where first five-fold connection points
are formed, that subsequently break into a three-fold connection and two unconnected
tubes. We did not find evidence for this mechanism in our simulations. Instead, we find
only three- and four-fold connection points linked by short liquid bridges that sever by
a necking mechanism. In the last stages of evolution, where the sample is almost com-
pletely hexagonally ordered, we find local defects in the form of liquid bridges between
otherwise parallel rods. The dominant mechanism for topological transitions in that stage
is the scission of these liquid bridges, see the top-right picture in Fig. 11.

The path taken by the Brownian Dynamics (BD) simulation is very similar to that of
the of the DPD simulation in its early stages: the formation of a phase of interconnected
tubes. In the BD simulation we also find the tubes to align locally in a hexagonal structure,
but this phase is subsequently destroyed again. In many places throughout the simulation
box small hexagonal domains arise and disappear. None of these domains manage to
grow out to a globally ordered hexagonal phase, even when the simulation is extended
to 24 000τ . One may argue that there could be a subtle bug in the BD program, which
makes the hexagonal phase unstable [47]. If that would be the case then it is obvious
that the hexagonal phase does not form in the BD simulation. To check this loophole,
the hexagonal structure, as generated by the DPD simulation, was used as a starting
configuration and was evolved in a BD simulation over 50 000 time steps (3 000τ ). The
hexagonal phase remained stable. In fact the shape fluctuations of the tubes are smaller
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Fig. 12. Evolution of A3B7 structure function in DPD, after [36]

than they are in the DPD simulation. So either the hexagonal phase is metastable, but the
BD method cannot break it apart, or it is stable and the BD method cannot form it. In either
case it is demonstrated that there is a kinetic barrier that the BD method cannot cross.
Since the DPD method can cross this barrier, and since the only difference between the
two simulation methods is the conservation of momentum leading to a correct description
of hydrodynamics in the DPD method, we conclude that hydrodynamic interactions are
important in order to cross this barrier.

To define an order parameter for the structure we calculate the structure function:

S(k) = �A(k)�A(−k)/NA,

whereNA is the number of A-particles in the simulation. Its time evolution for the DPD
system is shown in Fig. 12.What we observe is that the system in Fourier-space first peaks
in a spherical shell around the origin (left). This already corresponds to level 2 ordering
(see Fig. 10) as the real-space structure (top-left in Fig. 11) is an isotropic network of
tubes; level 1 ordering takes place on a much shorter time-scale. When level 3 ordering
sets in (t ≈ 7 500τ ) the spherical symmetry is broken, and a ring structure emerges. In
real-space this ring corresponds to a hexagonal domain embedded in a network of tubes,
see top-middle structure in Fig. 11. This ring subsequently breaks in two halves, that
thereupon each break up in three peaks, Fig. 12 middle and right.

The time dependence of the structure function demonstrates that the ordering mech-
anism goes through various stages, where fewer and fewer modes contribute to the
structure. It is this decreasing number of modes contributing to S(k) that is character-
istic for the increasing amount of order. Therefore we would like to count the number
of k-vectors that contribute to the structure. Since S(k) can be interpreted as a density
of states in Fourier space, we define an order parameter by analogy to the entropy of
particles distributed in real space as

P =
∫

S(k) lnS(k) d3k.

Since this is a non-linear functional of the structure function, it distinguishes between
systems having a different number of peaks, but the same overall segregation, i.e. it is a
measure of the number of independent modes that contribute to the structure.

In Fig. 13 this order parameter is shown for the DPD simulation (with hydrodynam-
ics) and for the BD simulation (without hydrodynamics). The A3B7 simulation results
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Fig. 13. Evolution of order parameter for A3B7 and A5B5 systems in DPD and BD, after [36]

are marked HEX. Whereas the DPD simulation shows a continuous increase in order
(i.e. self-structuring of the system), the other simulation shows no clear trend. The be-
haviour of the order parameter demonstrates that hydrodynamic interactions are essential
in driving this system to the structure of lowest free energy for this particular point in
composition space.

To study the importance of hydrodynamics to the formation of the lamellar phase,
a melt of A5B5 block copolymers was studied with DPD and BD. As reported previ-
ously [36], the DPD simulation swiftly finds its lamellar equilibrium structure. In the
light of the previous observations one might expect that the BD simulation does not
find the correct equilibrium, because hydrodynamic interactions are absent. However,
the BD simulation does converge to the correct equilibrium, following exactly the same
dynamics as the DPD system does. Both with and without hydrodynamics the system
orders into a single lamellar domain, hence hydrodynamics is not essential for the forma-
tion of a lamellar phase. The increase of the order parameter in these simulations is also
shown in Fig. 13; the curves are marked LAM. Note that here the time-scale of evolution
is much shorter than for asymmetric polymers (marked HEX), where a connected tube
structure is formed in the second stage of evolution. The time to form the hexagonal
phase is about a factor 8 larger than the time to form the lamellar phase.

For asymmetric copolymers the DPD simulation, which includes hydrodynamics,
produces the hexagonal phase predicted by theory and other simulation studies. How-
ever, the Brownian Dynamics simulation, which does not include hydrodynamics, does
not produce the expected phase but remains trapped in an intermediate structure of in-
terconnected tubes. From these results we conclude that hydrodynamics is important
in driving the kinetics of micro-phase separation when an interconnected tube phase is
formed as an intermediate structure. This intermediate structure is formed as a precursor
for the hexagonal phase and the perforated lamellar phase. Indeed in the formation of the
HPL structure [36,44] we found a similar slow evolution as in the formation of the hexag-
onal phase. The result presented here is a typical example; we have found a very similar
pathway and slow evolution in other points within the hexagonal and HPL phases. For
symmetric block copolymers that evolve along a pathway that avoids the intermediate
connected tube structure, the system evolves quite efficiently if no hydrodynamic inter-
actions are included. Hence hydrodynamic interactions are not critical in this case. The
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observed mechanism for micro-phase separation is one of the simultaneous formation
of domains of lamellar order throughout the box, whereas the nucleation-and-growth
mechanism is pertinent to form the hexagonal phase.

Why is this the case? The nature of the symmetry change between isotropic and
hexagonal requires the transition to be of the first order: the Landau expansion contains
a non-zero cubic coefficient. This is not the case for the isotropic to lamellar transition,
which (in the Landau expansion) is second order, but becomes weakly first order when
fluctuations are taken into account [32]. Hence there is a natural tendency for a nucleated
process in the former transition, whereas this is not the case in the latter. Therefore,
the isotropic to lamellar transition must be spinodal. Nucleation-and-growth can be
expected to occur when the disordered phase is meta-stable, i.e. when a free energy
barrier separates the two phases. Now the hexagonal phase arises from a disordered
network of tubes. We speculate that this phase is meta-stable because it resembles the
gyroid structure (one might refer to it as a melted gyroid phase), and because of the
previous symmetry argument. This implies a (strong) first order transition. Hence the
hexagonal phase can be expected to grow via a nucleation-and-growth mechanism. The
lamellar phase is formed from a structure of disordered lamellae, which is topologically
different from the gyroid phase. There is no stable phase that resembles a disordered
lamellar system. Therefore this structure is unstable with respect to the lamellar phase
(i.e. the isotropic to lamellar transition is second order or weakly first order), and thus
the lamellar phase must form via a spinodal growth law.

4 Polymers and Membranes Interacting with Surfactant Solutions

4.1 Polymers and Surfactants in Solution

The DPD model has first been applied to polymers in solution by Kong et al. [48] and
the precise scaling relations were checked by Spenley [34]. These results show that even
polymer chains as short asL = 10 beads follow the correct endpoint distribution and are
characterised by the correct scaling exponents. For a well soluble polymer in solution,
theory predicts the endpoint separation and relaxation time to scale as

Re ∼ N0.59 and τR ∼ R3
e ∼ N1.77.

The simulation results by Spenley are [34]

Re ∼ (N − 1)0.58±0.04 and τR ∼ N1.80±0.04,

which is a very good correspondence between theory and simulation.
For the same model the binodal has been simulated by Wijmans et al. [15], using

the Gibbs Ensemble Monte Carlo method, see Fig. 14. In these simulations the polymer
volume fraction at the critical point scales as

φc ≈ 1.53
2.06 +N0.38 ; ∆ac ≈ 2.25

(
1 +N−0.44)1.75

.

This should be compared to the mean-field Flory–Huggins expressions for the critical
volume fraction and the critical χ-parameter as function of the polymer length:

φFH
c =

1
1 +
√
N

and χFH
c =

1
2

(

1 +
1√
N

)2

.
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Fig. 14. Binodal curves for soft sphere model, data obtained from Wijmans et al. [15]

Experiments cited by Wijmans et al. indicate a scaling behaviour
χc ∼ N−0.37. Again the correspondence between simulation and experiment is very
good, much better than the correspondence between experiment and mean-field theory.

To simulate a surfactant solution with the DPD model Jury et al. [49] used a minimal
model. Surfactant was represented by two beads, each representing head (H) and tail
(T) parts. When this is dissolved in a solvent (W), we have a model of a symmetric
non-ionic surfactant like C12EO6 in solution. The repulsion parameters were fixed at
aHH = aTT = aWW = 25, aHT = 30, aHW= 0, and aTW = 50. The temperature in the sim-
ulation was changed from kBT = 0.5 to kBT = 2.5 and the surfactant concentration
from 10 % to 100 %. Very similar phase separation kinetics was observed as in the block
copolymer systems described above. They find a micellar phase, a hexagonal phase, a
lamellar phase and a disordered structure, in line with the experimental phase diagram
of C12EO6. This indicates that the DPD model can indeed be used to study the phase
behaviour of complex liquids.

The above results also suggest that DPD is a good candidate to simulate the inter-
action of polymers with a surfactant solution. The generally accepted picture is that
complete micelles adsorb on the polymer [50–52], leading to a necklace of micelle
pearls on a polymer backbone [53]. However, small angle neutron scattering (SANS)
data on the poly(ethylene oxide) and sodium dodecyl sulfate (SDS) system by Chari
et al. [54] suggest that the polymer resembles a swollen cage, rather than a necklace
around SDS micelles. Fluorescence measurements on the same system indicate that
the aggregation number of SDS is low at the onset of binding, but increases with sur-
factant concentration where the aggregate forms an elongated rod [55]. For PEO/SDS
(PEO = polyethyleneoxide) mixtures it is also found that on increasing SDS concen-
tration the polymer initially reduces in size, but when the surfactant concentration is
increased beyond a certain point the polymer swells again [56,57].
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Fig. 15. Phase diagram for minimal surfactant model, after Jury et al. [49]

To predict when in a polymer-surfactant system such molecular bottlebrushes are
formed, and when the surfactant adsorbs as micelles, Groot employed the DPD tech-
nique [58]. Both the polymer and the surfactant molecules are represented by strings of
soft spheres. For this model the chemical potential of surfactant in the presence of poly-
mer can be obtained relatively easy using the Widom insertion method. In the present
work a number of examples of polymer-surfactant interactions are described, from which
we can deduce when we have micelle binding, and when a continuous binding process is
pertinent. To model a two-bead surfactant that readily agglomerates in spherical micelles,
the head-head repulsion was increased and the tail-tail repulsion was decreased relative
to the water-water repulsion. To model a range of polymer-surfactant interactions, vari-
ous repulsions between the polymer beads and the surfactant tails and head-groups were
studied. When the polymer is attracted towards the surfactant tail, the surfactant can be
characterised as hydrophobically interacting, when it is not hydrophobically interacting
with the polymer the surfactant can still interact via its head-group.

The simulations comprised of one homopolymer (length L = 50) in a box of size
10×10×10, with various amounts of added surfactant. Pictures of typical polymer con-
formations with 10 surfactant molecules added (less than one micelle) and 100 surfactant
molecules added (more than one micelle) are shown in Fig. 16. The conformations shown
are at 100 and 300 ns, respectively. In the Ns = 10 system (on the left) all surfactant
molecules are already adsorbed on the polymer at 70 ns. What is observed in a movie of
the Ns = 100 simulation is that sometimes individual micelles are discernible and the
polymer coils from one micelle to another. This textbook state is alternated with a state
where the polymer-surfactant complex forms a sausage where all surfactant molecules
run across the polymer backbone collectively in a wave-like motion. This break-up of
micelles is related to the strong attractive interaction between the polymer backbone and
surfactant tails.
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Fig. 16. Polymer-surfactant conformations with 10 surfactant molecules (left) and 100 surfactant
molecules (middle and right), after [58]

a) b)

Fig. 17. a) Endpoint separation and swelling exponent passing through minimum, after [58]. b)
Endpoint separation as function of bulk surfactant concentration, after [58]

Note that in the presence of 10 surfactant molecules the polymer is collapsed, while
it is swollen when 100 surfactant molecules are added. All parameter sets studied show
the same qualitative behaviour. The polymer endpoint separation is shown in Fig. 17a
as a function of the number of surfactant molecules. This figure indicates a dramatic
decrease in size of the polymer as the surfactant concentration increases, up to a certain
point where precisely one micelle has formed at the polymer. From then on the polymer
starts to swell again.

To further analyse the system the endpoint distribution has been fitted to the scaling
function [59,60]

ln (Ψ(r)) = a+
(

1.026ν − 0.5
1− ν

)

ln(r)− br1/(1−ν),

where a and b are arbitrary fit parameters, and ν is the swelling exponent. Upon ad-
dition of surfactant the distribution firstly narrows (Ns = 20) but for high surfactant
concentration the polymer swells again. In Fig. 17a the swelling exponent that is ob-
tained this way is compared with the endpoint separation. The curves are very similar.
This plot indicates that an initially marginally soluble (ν = 0.5) polymer undergoes a
coil-globule transition (ν < 0.4) when surfactant is added in a particular ratio. When
yet more surfactant is added the polymer swells again, even more than a self-avoiding
chain, ν = 0.65. This should be contrasted to experimental observations. Chari et al. [54]
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obtained the swelling exponent ν = 0.65 for a saturated PEO/SDS system as we find
here. Thompson et al. [57] study the thickness of an adsorbed layer of PEO, and find
an initial decrease, followed by a subsequent increase when the SDS concentration is
increased, very similar to the present simulation results.

In the previous simulations, the number of surfactant molecules in the system was var-
ied. This number takes rather small values, so that in some cases all surfactant molecules
are aggregated into the same cluster. What we want is to describe a single polymer in
equilibrium with an infinitely large surfactant solution. To determine this equilibrium
concentration, the first thing to establish is which quantity determines this equilibrium.
For this purpose we study two boxes, one contains polymer, surfactant and water (I),
and the other contains only surfactant and water (II).

The total Gibbs free energy of the system comprising the sub-systems I and II is

G = µI
pN

I
p + µI

sN
I
s + µI

wN
I
w + µII

s N
II
s + µII

wN
II
w ,

where I and II refer to boxes I and II, and Np, Ns and Nw are the number of polymer,
surfactant and water molecules present in the respective boxes. This thought experiment
is an example of the Gibbs ensemble in which the total number of molecules in the two
boxes is fixed, but molecules are allowed to move from box I to box II and vice versa.
However, as an extra constraint, we impose that the total number of particles in each
box is constant. The only allowed moves are swaps of a surfactant molecule from I to II
and a simultaneous swap of an equal number of water beads from II to I, and vice versa.
The variation of the Gibbs free energy under these swaps is

δG =
(
µI

s − µII
s
)
δNs − Ls

(
µI

w − µII
w
)
δNs,

where Ls is the number of beads in a surfactant. As in equilibrium δG = 0, we find

µI
s − Lsµ

I
w = µII

s − Lsµ
II
w = µ

from which the proper chemical potential follows as

µ = kBT ln (�s)− LskBT ln (�w) +∆µs − Ls∆µw.

Here �s and �w are the concentrations of surfactant and water molecules respectively.
Hence, to calculate the equilibrium concentration of surfactant in a system without
polymer we need to measure the excess chemical potentials of both water and surfactant.
The bulk surfactant concentration in equilibrium with the polymer-surfactant complex
has the same chemical potential. Combining this with the polymer endpoint separation
results, we find the curve shown in Fig. 17b.

For hydrophobically interacting surfactants, the chemical potential is a continuously
rising function for 0 < Ns < 50, see Fig. 18a. This behaviour is characteristic for con-
tinuous adsorption. In the simulation we find bottlebrush conformations at the higher
surfactant concentrations. When the head-group repulsion is changed from a net repul-
sion into a net attraction, the chemical potential curve shifts down, but still has the same
initial slope at small surfactant concentration.

However, when the interaction of the polymer with the tail is switched to be repulsive
(χpt is increased from −1.5 to +2.0) a dramatic change is observed: the chemical
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a) b)

Fig. 18. a) Surfactant chemical potential for headgroup/hydrophobic interaction, after [58]. b)
“Phase diagram” of polymer-surfactant aggregation, after [58]

potential first decreases with surfactant concentration, passes through a minimum, and
then increases again. This behaviour signals micelle adsorption. When the surfactant
concentration in the bulk is slowly increased, the adsorbed amount will follow the infinite
dilution limit in the presence of polymer, up to the point where on average 0.3 molecules
are adsorbed. Here the chemical potential equals the minimum chemical potential at
which adsorbed micelles can exist. At this point the adsorbed amount jumps up to the
value corresponding to one adsorbed micelle, see Fig. 18a. Such behaviour is predicted to
occur when a strong interaction between surfactant head-group and polymer is pertinent,
for instance for the binding of a cationic surfactant to an anionic polymer. This result also
implies that when the total surfactant concentration is continuously increased in a system
with many polymers present, the bulk surfactant concentration will remain constant at
the value corresponding to the critical aggregation concentration (CAC), until a micelle
is adsorbed on every polymer in the system. At the CAC, the system contains a mixture
of polymers without any surfactant molecules adsorbed, and polymers with a complete
micelle adsorbed. These micelles are smaller than the micelles that are formed in the
bulk.

To roughly map out when each of the binding modes is pertinent, a number of short
runs has been performed throughout the (χpt,χph) parameter space, for one polymer and
30 surfactant molecules. The result is shown in the “phase-diagram” in Fig. 18b. This
diagram should be considered as a qualitative picture, capturing the relevant physical
phenomena. To predict such a diagram for a particular surfactant requires a careful
tuning of the parameters that have been kept fixed here, viz. the head-group/head-group
and the head-group/tail interactions. The qualitative agreement between the available
experimental data and the presently studied dumbbell surfactant model warrants a further
study to map chemically specific surfactant systems onto the dumbbell model.

4.2 Biomembrane Morphology

Another area in which the DPD method has been applied successfully is the interaction of
surfactant with biomembranes. Non-ionic surfactants have traditionally been considered
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as mild. However, alcohol ethoxylates are shown to be capable of inhibiting bacterial
growth [61]. There is evidence that non-ionic surfactant can interact with in vitro lipid
membranes by the formation of channels through the membrane [62]. The occurrence of
“hole” formation in bilayers of long chain surfactants has been demonstrated for certain
non-ionic surfactants by small angle x-ray scattering studies [63]. Similar structures
have been found in experiments on block co-polymers [39,40] and in simulations thereof
(see Fig. 7). Finally, addition of cationic surfactants to lipid membranes leads to hole
formation [64,65]. It therefore seems reasonable to enquire whether the interaction of
alcohol ethoxylates and phospholipids typical of bacterial membranes would naturally
lead to such mesh phase which would make the bacterial cell leaky and leading to
bacterial stasis and ultimately to cell death. No evidence has been found for a structured
perforated phase in deuterium NMR and x-ray diffraction studies on the interaction
of a phosphatidylethanolamine extract of Escherichia coli with an alcohol ethoxylate
formulation. For this reason a simulation study was undertaken, to find evidence of
moving or temporary holes. Since hole formation and disappearance is expected to
occur beyond the time scale that can be reached with molecular dynamics, the DPD
simulation method was employed by Groot and Rabone [13].

In the simulated system, three carbon atoms are taken together into one bead. The
Flory–Huggins theory was used to derive the relevant χ-parameters from experimental
solubilities. To reproduce the correct solubility of hexane, heptane and octane in water,
they found χhydrocarbon−water ≈ 6.0, which appears to be relatively independent of
temperature. The second χ-parameter to match that is that between polyethyleneoxide
and water. The problem here is that PEO and water at room temperature mix in all ratios,
hence the solubility does not lead to a parameter value. At elevated temperatures (T >
100◦ C), water and PEO no longer mix ideally. Hence an alternative route is to describe
this demixing at higher temperatures, and to extrapolate the temperature dependence of
the χ-parameter back to room temperature. This way Barneveld et al. [66] estimated this
χ-parameter as function of temperature and found the value χew ≈ 0.30− 0.38 at room
temperature. However, he only took the cloud-point into account where mean-field theory
is least reliable. Taking the shape of the whole binodal into account and extrapolating
back to room temperature, Groot and Rabone [13] find from the experimental data by
Seaki et al. [67]: χew ≈ 0.30± 0.04, which is close to the value obtained by Barneveld.

A third important χ-parameter is the interaction between PEO and hydrocarbons.
What experimentally is available is neutron scattering data of C12E6 at the air-water
interface [68]. Assuming that this is not too dissimilar from the oil-water interface,
this data can be compared to DPD simulation data of an oil-surfactant-water system.
The experiment shows a significant overlap between the surfactant head group and the
surfactant tails. To arrive at the same amount of overlap in simulation as in the experiment,
a χ-parameter much smaller than the hydrocarbon-water parameter needs to be used.
A good agreement between the width and overlap of the head and tail peaks as seen in
experiment and simulation is found atχ-parameter between hydrocarbons and EO beads
χce = 2.0.

Finally the χ-parameters describing the head-group of the lipid molecule were de-
fined. Since these groups contain more oxygen than EO does, and also have partial
charges, it has been treated as if it were water, with respect to C and EO. The result-
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a) b)

Fig. 19. a) DPD bilayer density profile compared to MD density profile, b) Displacement of a
water and lipid parallel and perpendicular to membrane, after [13]

ing bilayers have been compared with molecular dynamic simulations of 1-palmitoyl-2-
oleoyl-sn-glycero-3-phophatidylcholine (POPC) [2] for two sets of parameters, covering
the range of uncertainty. It is found that the head-group parameters are not critical for the
result. The density profiles obtained from DPD simulations of lipid bilayers containing
200 lipid molecules are compared to previous MD simulation results [2] in Fig. 19a. The
two peaks in the CH2 density profile arise because the CH3 chain endpoint is localised
in the centre of the bilayer, and is not included in the average. In the DPD simulation
the average is over all but the last c-bead, i.e. the last three carbon atoms are excluded
from the average. Good correspondence with the MD simulation for either set gives
confidence in the reliability of the model and parameters.

To validate the time scale a bilayer simulation is used to obtain the lateral diffusion
coefficient of the lipid molecules, which can be checked against experimental and MD
simulated values. For POPC the simulation result is D‖ = 0.073×10−5 cm2 / s. Some
care must be taken, since the MD simulation was too short for two molecules even to
swap places in the layer. Experiments [69,70] indicate lateral diffusion coefficient of
DOPC to be in the range D‖ = 0.036×10−5 cm2 / s and D‖ = 0.02×10−5 cm2 / s. In
the DPD simulation the mean square displacements parallel (and also perpendicular) to
the bilayer were averaged. During this run each lipid molecule travelled 10 times the
nearest neighbour distance on average. The diffusion coefficient in the DPD simulation
isD‖ = 0.06×10−5 cm2 / s. This lateral diffusion coefficient compares well with the ex-
perimental (0.02 – 0.04×10−5 cm2 / s) and MD simulation (0.07×10−5 cm2 / s) values
in the literature, even though no attempt has been made to match the relative viscosity
of the lipid phase.

To investigate the structure of mixtures of lipid/surfactant bilayers, a series of sim-
ulations was done with 540 membrane molecules, surfactant or lipid, at a surfactant
mole-fraction varying from 10 % to 100 % in steps of 10 %. Simulations have been done
both with C12E6 (bead structure c4e4) and with C9E8 (bead structure c3e5). First we
concentrate on the results regarding C12E6. The system with 90 % mole-fraction C12E6
displays holes that move around. They are relatively stable, the typical life-time is 20 –
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Fig. 20. Transverse water diffusion coefficient of water through the bilayer in the presence of
surfactant, after [13]

40 ns, and over the course of the run there is hardly ever a conformation without a hole in
the patch of 124 nm2. Systems with mole-fraction 80 % or less of surfactant do not show
stable perforated conformations. Occasionally small holes do appear, but they disappear
very quickly. At 80 % mole-fraction surfactant the typical life-time of a hole is some
0.4 – 1 ns.

The diffusion of water perpendicular to the layers provides a useful way of testing the
porosity of the bilayers. To interpret these results, we first solve the diffusion equation
for the mean square displacement of water in a narrow slit of impenetrable walls at
distance L. For diffusion coefficientD, the mean square displacement perpendicular to
the walls follows analytically as

R2
s (t)
L2 =

1
6
− 16
π4

∑

n odd

n−4exp
(

−n
2π2Dt

L2

)

≈ 1
6

[

1− 96
π4 e−t/τ−

(

1− 96
π4

)

e−9t/τ

]

. (6)

The first expression is exact. The second is a good approximation that can be used for
curve fitting. To find a reliable value for the transverse diffusion coefficient, the mean
square displacement of water normal to the bilayers is recorded, and the transverse
diffusion is obtained by fitting the data to

R2(t) = aR2
s (t; τ) + 2D⊥t,

where R2
s is the diffusion in a slit given by (6), and a and τ are free fit parameters. The

resulting transverse diffusion of water is shown in Fig. 20 as a function of the surfactant
mole-fraction in the layer.

It is found that up to, and including, mole-fraction of 50 % C12E6, the diffusion of
water through the bilayer is independent of the amount of added surfactant. From that
point onwards the water diffusion through the layers steadily increases. This increase is
attributed to the formation of small holes that open and close on a time-scale of 0.5 ns
or less, depending on the surfactant content. Permanent holes occur at 90 % surfactant.
Consequently the transverse diffusion coefficient increases sharply above 80 % surfac-
tant.
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The transverse diffusion of water through the PE/C9E8 bilayer is also shown in
Fig. 20. We see the same qualitative picture involving the creation and annihilation of
small transient holes, followed by a phase with stable holes at higher surfactant content.
However, the range of surfactant concentrations over which transient holes occur is much
shorter than for C12E6. Also, the point where stable holes are formed is reached already
at 70 % mole-fraction of surfactant. The real transition points must be between 60 and
70 % for C9E8 and between 80 and 90 % for C12E6, i.e. some 56 % and 78 % by weight
respectively. The approximate ranges where no holes, fluctuating holes and stable holes
occur are indicated in Fig. 20 by bars.

4.3 Biomembrane Deformation and Rupture

So far we have been concerned only with membranes at vanishing surface tension. How-
ever, in many cases it is found that dividing cells are particularly vulnerable. Dividing
cells are not necessarily in a state of vanishing membrane tension. For instance, when
yeast cells divide, their cell membrane buds out of the cell wall and is no longer pro-
tected by it. Instead the membrane is exposed to the solution. The osmotic pressure
difference between inside and outside of the cell then leads to a finite surface tension on
the membrane. The membrane will react to this osmotic pressure by expanding, which
is an obvious prerequisite for cell division when the budding mechanism is pertinent. If
the membrane cannot withstand this expansion, the cell will die. For these reasons it is
prudent to simulate cell membranes under strain, rather than to study them at zero sur-
face tension, as far as the mechanism for cell-death is concerned. Simulations of mixed
membranes of lipid and C12E6 were undertaken in which the membrane is stretched over
time, leading to increasing tension and ultimately to rupture. An example of this process
is shown in Fig. 21, where the actual creation and expansion of holes is monitored. The
successive frames are taken at time intervals of 1.2 ns and the patches are 17×17 nm2

across. This membrane consists of 70 % PE and 30 % C12E6. It ruptures when its area
is increased by 74 %.

The full stress history of the expanding membrane is followed in simulation. Each
system is left to equilibrate over 5.3 ns after which time the y- and z-coordinates are
expanded by a factor 1.03, while the x-coordinates are contracted by a factor 0.94.
This cycle is repeated 12 times. This gives the yield curves shown in Fig. 22 for 10,
50 and 80 % mole fraction surfactant. Each simulation shows a clear rise in surface
tension, up to a critical point where the layer fails. These simulations predict that adding
surfactant to a lipid membrane significantly reduces the strength and maximum stretch
of the membrane. This holds even at amounts of surfactant that have no measurable
influence on the level of water diffusion through a stress-free bilayer. Without surfactant
the membrane area may be increased by 100 % before it ruptures, but at a 50 % mole-
fraction of surfactant this tolerance is reduced to a mere 50 % area increase. Also the
maximum tension that the membrane can take reduces from 67 mN / m at 0 % surfactant,
to 41 mN / m at 50 % surfactant.

The trends predicted imply that the cell will become more sensitive to the osmotic
pressure difference between inside and outside, when it is exposed to a surfactant so-
lution. For a bilayer containing 50 % mole-fraction surfactant, the pressure tolerance
is reduced by some 40 %. This will have dramatic influence on the survival chances of
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Fig. 21. Rupture process of a simulated biomembrane, after [13]

Fig. 22. Stress-strain curves for biomembranes at various amounts of surfactant, after [13]

dividing cells. Another system for which these simulations are relevant is red blood cells.
These cells do not have a cell wall, but only a cell membrane. Therefore the membrane
is directly exposed to the solution, and has to accommodate for all osmotic pressure
differences. When the maximum pressure that a cell can withstand by incorporation of
surfactant decreases below the actual osmotic pressure, the membrane ruptures. These
simulations give a possible explanation why red blood cells lyse when they are exposed
to a surfactant solution.
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5 Conclusions

In summary, dissipative particle dynamics is a flexible method and easy to code simula-
tion method. It has already been applied successfully to a wide variety of problems, even
though we deal with a relatively new technique. The strong points of the method are: it is
very competitive for hydrodynamics of polymers and mesophases, useful for multiphase
flows, porous media, colloidal dispersions, etc. It is able to produce molecularly detailed
simulations up to microseconds. In this mode it is faster than full atomistic Molecular
Dynamics by many orders of magnitude.

The down sides of the method are the following: diffusion is too fast, the speed
of sound is too low, the equation of state not always realistic, and parameterisation is
a problem for detailed chemistry. With respect to these points it should be mentioned
that the first is not always a problem, but actually contributes to the speed of evolution.
For multiphase flow where both diffusive and hydrodynamic processes are important,
this flaw can be repaired using the Andersen Monte Carlo method for the velocity ran-
domisation [23]. Also the equation of state can be made more realistic if required [19].
Finally, the parameterisation problem for molecular simulation is a general problem in
mesoscopic simulation, and not specific to dissipative particle dynamics.
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